

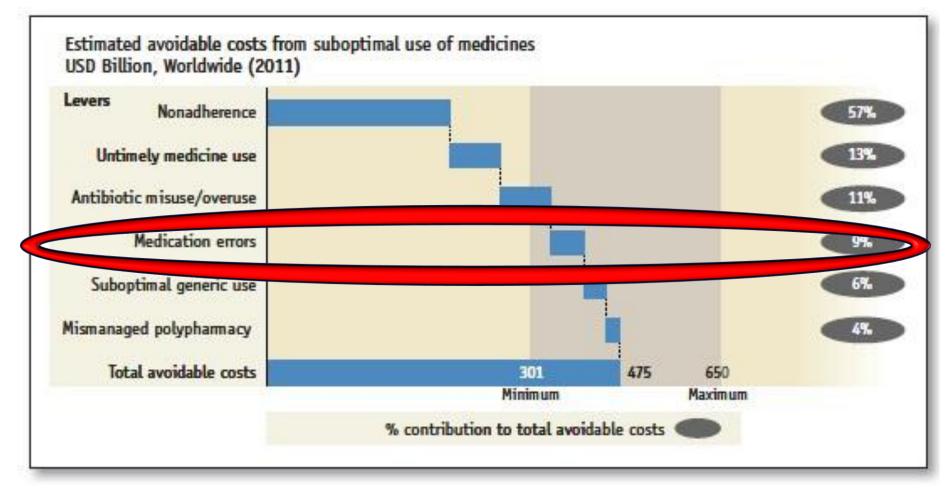
Global Top 100 University

Determining economic impact of a pharmacist-led IT-based intervention with simple feedback in reducing rates of clinically important errors in medicines management in general practices (PINCER)

Rachel A Elliott, Koen Putman, Machew Franklin, Nick Verhaeghe, Lieven

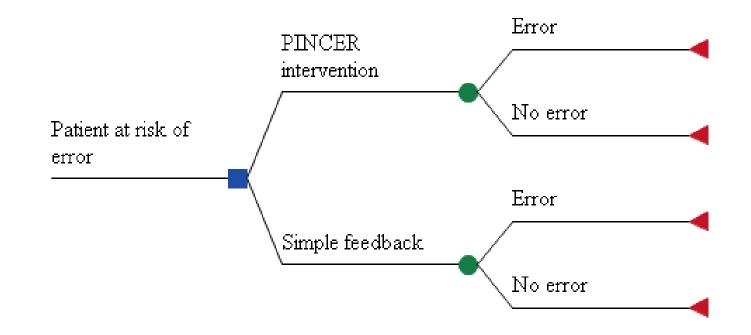
Annemans, Martin Eden, Jasdeen Havre, Sarah Rodgers, Judith A Cantrill, Sarah Armstrong, Kathrin Cesswell, Julia Hippisley-Cox, Rachel Howard, Denise Kendrick, Caroline J Morris, Scott A Murray, Robin J Prescott, Glen Swanwick, Matthew Boyd, Lorna Tuersley, Tom Turner, Yana Vinogradova, Aziz, neikh, Anthony J Avery

A project funded by the Department of Health


Economic impact of reducing medication errors

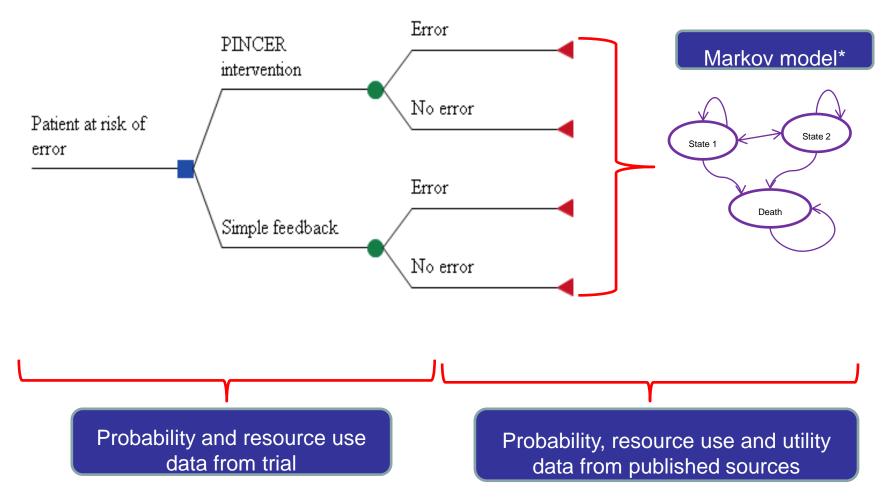
- Medication errors in general practice
 - important source of potentially preventable morbidity & mortality?
- Implicit assumption that improving safety is a "good thing"
 - most errors documented are minor
 - unlikely to affect patient outcome and associated cost.
- Initiatives to reduce medication errors are usually costly.
- What is the true economic impact of medication error?
- Is it worth doing something about it?

Economic impact of reducing errors in health care



Advancing the responsible use of medicines, IMS Institute for Healthcare Informatics, October 2012.

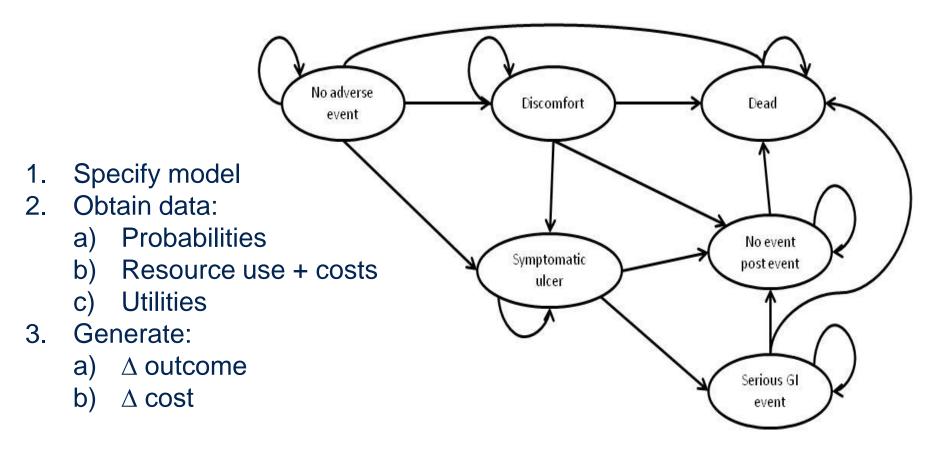
Decision problem for within-trial economic analysis


PINCER trial results: cost per error avoided

Mean cost per practice (range)/£	Simple feedback	PINCER intervention	
Report generation	92·84 (n/a)	92·84 (n/a)	
Pharmacist training costs	0	275.92 (79.54 – 591.23)	
Quarterly facilitated strategic	0	195-23 (56-28 – 418-33)	
meetings			
Monthly operational meetings	0	56.88 (16.40 – 121.88)	
Practice feedback	0	22.07 (6.36 – 47.29)	
Management of errors	0	406.70 (57.04 – 1 318.68)	
Total cost	92.84 (n/a) 1 049.67 (329.22 – 2 086.		
Mean incremental cost (95% CI)/£	871.88 (765.96 – 977.79)		
Mean incremental errors (95% CI)	-12.90 (-13.42 – -12.39)		
Mean ICER (2.5-97.5 th percentile)/£	65.60 (58.2 – 73.0)		
per error avoided		5	

What is the economic impact of PINCER?

*number and type of health states will depend on the prescribing or monitoring error


PINCER composite economic model

- Develop and populate treatment pathway models for each error
 - Probabilistic Markov model, clinical face validity
 - 5 yr time horizon, NHS perspective
 - UK resource use and unit costs
- Generate incremental utility and cost per patient for each error
- Combine treatment pathways with within trial PINCER analysis
 - Error rates observed per practice in trial: (mean practice population at risk:799) OM1: 7%; OM2: 71%; OM3: 16%; OM5: 4%; OM7: 1%; OM8: 1%
- Generate base case cost per QALY, CEAC, net benefit
- Sensitivity analysis (cost of intervention, size of practice)
- Scenario analysis (effect of different errors)

Example of a specific error model: Patients with a past medical history of peptic ulcer who have been prescribed a non-selective NSAID and no PPI

9

Probabilities for NSAIDs model

Transition probabilities for patients in the non-error-group

	Transition to:							
Transition	No GI Discomfort		Symptomatic	Serious GI	No further GI	Death		
from:	adverse		ulcer	event	following initial			
	event				GI event			
No GI AE	0.894*	0.099	0.0047	0.0001	0.0	0.0003		
Discomfort	0.0	0.188	0.0069	0.00015	0.802*	0.0003		
Symptomatic	0.0	0.148	0.0183	0.00039	0.824*	0.001		
ulcer								
Serious GI	0.0	0.148	0.0183	0.00039	0.725*	0.1083		
event								
No GI post GI	0.0	0.0985	0.0001	0.0001	0.894*	0.0003		
Death	0.0	0.0	0.0	0.0	0.0	1.00		
*1-(sum of other probabilities)								

Example of resource use for NSAIDs model

Cost per patient for pathway: discomfort, therapy switch + inpatient							
medical management							
Resource	Mean	Minimum	Maximum				
Costs of original drug for 3	£7.10	£7.10	£7.10				
months							
One GP visit at end of first	£34.00	£34.00	£34.00				
month							
Remaining treatment period	Adding PPI to original drug						
Inpatient investigation	£2,578.49	£2,464.34	£2,841.64				
2 months PPI	£62.61	£62.61	£62.61				
Total	£2,682.21	£2,568	£2,945				

Utilities for NSAIDs model

Health state	Utility weight
No GI adverse events	1.000
Discomfort	0.910
Symptomatic ulcer	0.870
Serious GI event	0.824
No further GI event following initial GI event	1.000
Death	0

PINCER intervention vs current practice: deterministic CEA

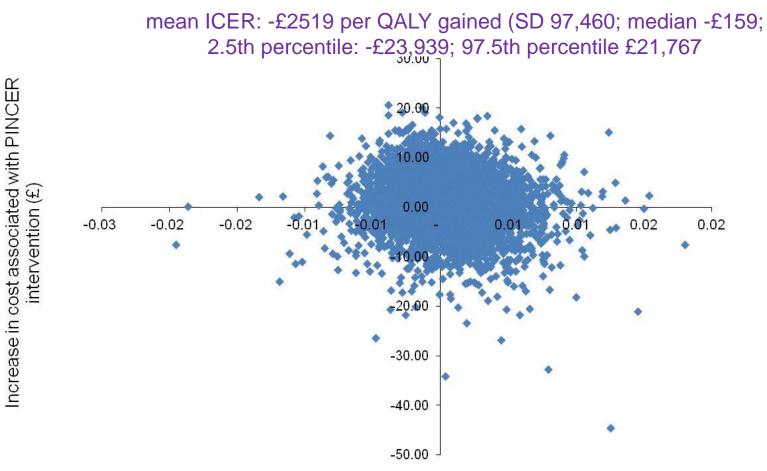
Prevalence of patient group in practice	Control event rate per practice	RRR intervention	QALYs generated per practice*		Cost/£ per practice		
			Control	Inter.	Control	Inter.	
7%	0.04	0.35	256.61	256.62	95252.79	94938.75	

∆QALY per practice	Δ Cost per practice (£)		
0.01	-314.03		

Global Top 100 University

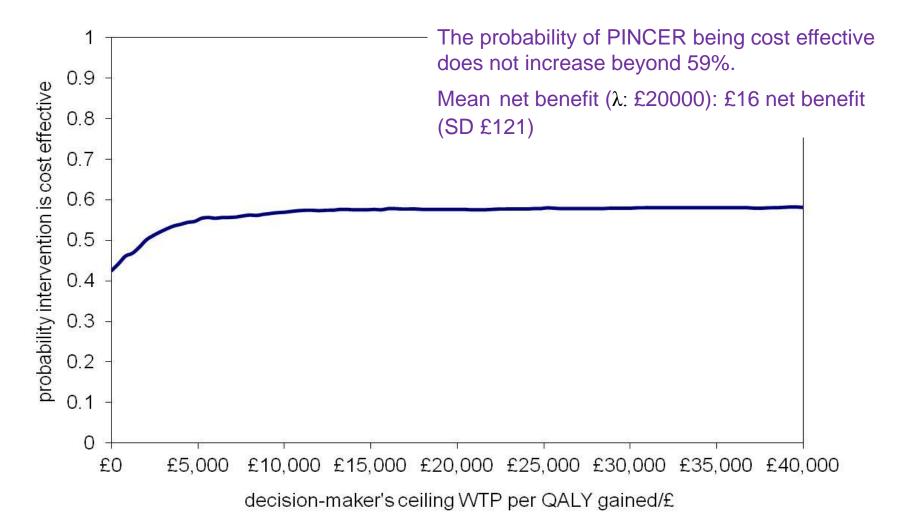
UNITED KINGDOM · CHINA · MALAYSIA

PINCER intervention vs current practice: deterministic CEA

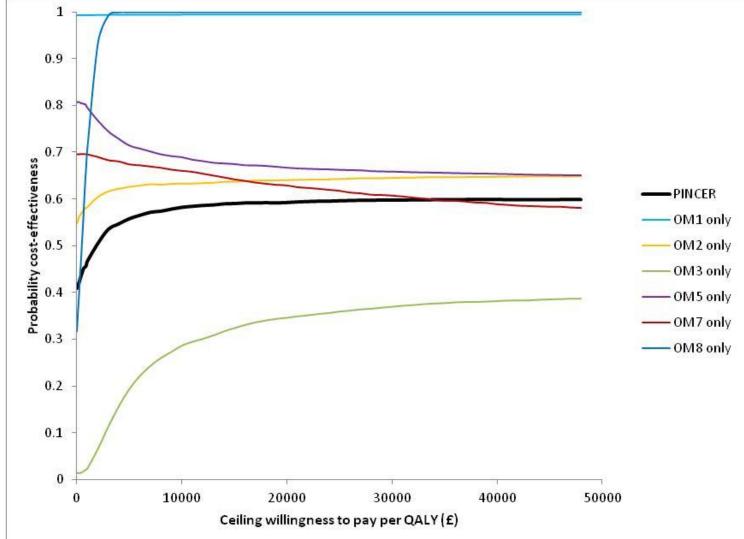

Error	Prevalenc e of patient group in practice	Control event rate per practice	RRR intervention		nerated per	Cost/£ pe	r practice	QALY difference per practice	Cost difference per practice (£)
				Control	Intervention	Control	Intervention		
NSAIDs	7%	0.04	0.35	256.61	256.62	95252.79	94938.75	0.01	-314.03
Bblockers	71%	0.03	0.17	1530.27	1530.53	241722.54	240758.77	0.26	-963.77
ACEI	16%	0.08	0.36	407.62	407.79	112325.80	111077.01	0.16	-1248.79
Methotre	4%	0.31	0.19	124.64	124.81	53790.15	52821.93	0.16	-968.22
Lithium	1%	0.40	0.11	24.19	24.19	95148.32	94939.67	0.00	-208.65
Amiodar	1%	0.45	0.25	36.84	37.05	15837.85	16058.50	0.21	220.65
	Difference in intervention cost /practice							871.88	
							Total	0.81	-2611
							ICER	-3,24	3/CS ¹³

14

PINCER intervention vs current practice: probabilistic CEA



Increase in utility production with PINCER intervention (QALYs)


CEAC of PINCER intervention vs current practice

CEAC of PINCER intervention: individual errors

Global Top 100 University

Discussion

- ↓errors associated with primary outcomes in the PINCER trial leads to ↑QALYs and ↓ costs
- Uncertainty around some specific error models (eg beta-blockers) very large due to lack of data
- Mean ICER low, but huge variation, so poor probability of cost effectiveness, negligible net benefit
- Cost effectiveness affected by inclusion of particular errors (esp those with better evidence)
- Changing intervention costs had little effect on ICER

Using economic evaluation to evaluate safety in health care

- Emerging safety culture in health care (finally), moving from personcentred to system-centred paradigm
- System-centred interventions are costly
- Preventing errors and adverse events completely is prohibitively expensive with diminishing returns
 - Eg testing everyone for allergies to antibiotics
- So, preventability of adverse events is determined (to some greater or lesser extent) by affordability
- Therefore, CEA should be involved in development of safety interventions (but usually isn't).....
- But, are standard health economic methods able to evaluate safety interventions?

Thank you

Any questions?

Rachel.elliott@nottingham.ac.uk